Part Number Hot Search : 
ZXM63N0 SA78CA CP210 2SB64 RTL8201 LQW15 11EWA 90858
Product Description
Full Text Search
 

To Download SGW15N60 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SGP15N60,
Fast IGBT in NPT-technology
* 75% lower Eoff compared to previous generation combined with low conduction losses * Short circuit withstand time - 10 s * Designed for: - Motor controls - Inverter * NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability
SGB15N60 SGW15N60
C
G
E
P-TO-220-3-1 (TO-220AB)
P-TO-263-3-2 (D-PAK) P-TO-247-3-1 (TO-263AB) (TO-247AC)
* Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SGP15N60 SGB15N60 SGW15N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25C TC = 100C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE 600V, Tj 150C Gate-emitter voltage Avalanche energy, single pulse IC = 15 A, VCC = 50 V, RGE = 25 , start at Tj = 25C Short circuit withstand time Power dissipation TC = 25C Operating junction and storage temperature Tj , Tstg -55...+150 C
1)
VCE 600V
IC 15A
VCE(sat) 2.3V
Tj 150C
Package TO-220AB TO-263AB TO-247AC
Ordering Code Q67040-S4508 Q67041-A4711 Q67040-S4235
Symbol VCE IC
Value 600 31 15
Unit V A
ICpul s VGE EAS
62 62 20 85 V mJ
tSC Ptot
10 139
s W
VGE = 15V, VCC 600V, Tj 150C
1)
Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Jul-02
SGP15N60,
Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction - case Thermal resistance, junction - ambient SMD version, device on PCB
1)
SGB15N60 SGW15N60
Max. Value Unit
Symbol
Conditions
RthJC RthJA RthJA TO-220AB TO-247AC TO-263AB
0.9 62 40 40
K/W
Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 A VCE(sat) V G E = 15 V , I C = 15 A T j =2 5 C T j =1 5 0 C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 40 0 A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 C T j =1 5 0 C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current
2)
Symbol
Conditions
Value min. 600 1.7 3 3 Typ. 2 2.3 4 10.9 800 84 52 76 7 13 150 max. 2.4 2.8 5
Unit
V
A 40 2000 100 960 101 62 99 A nC nH nA S pF
IGES gfs Ciss Coss Crss QGate LE IC(SC)
V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 15 A V C E = 25 V , V G E = 0V , f= 1 MH z V C C = 48 0 V, I C =1 5 A V G E = 15 V T O - 22 0A B T O - 24 7A C V G E = 15 V ,t S C 10 s V C C 6 0 0 V, T j 15 0 C
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70m thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Jul-02
1)
2
SGP15N60,
Switching Characteristic, Inductive Load, at Tj=25 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =2 5 C , V C C = 40 0 V, I C = 1 5 A, V G E = 0/ 15 V , R G = 21 , 1) L = 18 0 nH , 1) C = 25 0 pF Energy losses include "tail" and diode reverse recovery. Symbol Conditions
SGB15N60 SGW15N60
Value min. typ. 32 23 234 46 0.30 0.27 0.57 max. 38 28 281 55 0.36 0.35 0.71 mJ Unit
ns
Switching Characteristic, Inductive Load, at Tj=150 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 C V C C = 40 0 V, I C = 1 5 A, 1) L =1 8 0n H, 1) C = 2 50 pF V G E = 0/ 15 V , R G = 21 Energy losses include "tail" and diode reverse recovery. 31 23 261 54 0.45 0.41 0.86 38 28 313 65 0.54 0.53 1.07 mJ ns Symbol Conditions Value min. typ. max. Unit
1)
Leakage inductance L an d Stray capacity C due to dynamic test circuit in Figure E. 3 Jul-02
SGP15N60,
80A
100A
SGB15N60 SGW15N60
tp=5s 15s
Ic
70A 60A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
10A 50s
50A 40A 30A TC=110C 20A 10A 0A 10Hz TC=80C
200s 1A 1ms
Ic
DC 0.1A 1V 10V 100V 1000V
100Hz
1kHz
10kHz
100kHz
f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj 150C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 21)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 150C)
35A
140W
30A
120W 100W 80W 60W 40W 20W 0W 25C
IC, COLLECTOR CURRENT
50C 75C 100C 125C
Ptot, POWER DISSIPATION
25A 20A 15A 10A 5A 0A 25C
50C
75C
100C
125C
TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 150C)
TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 150C)
4
Jul-02
SGP15N60,
50A 45A 40A
50A 45A 40A
SGB15N60 SGW15N60
IC, COLLECTOR CURRENT
35A 30A 25A 20A 15A 10A 5A 0A 0V
IC, COLLECTOR CURRENT
VGE=20V 15V 13V 11V 9V 7V 5V
35A 30A 25A 20A 15A 10A 5A 0A 0V
VGE=20V 15V 13V 11V 9V 7V 5V
1V
2V
3V
4V
5V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C)
45A 40A
Tj=+25C -55C +150C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
50A
4.0V
3.5V
IC = 30A
3.0V
IC, COLLECTOR CURRENT
35A 30A 25A 20A 15A 10A 5A 0A 0V
2.5V
IC = 15A
2.0V
1.5V
2V
4V
6V
8V
10V
1.0V
-50C
0C
50C
100C
150C
VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V)
Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V)
5
Jul-02
SGP15N60,
SGB15N60 SGW15N60
td(off)
td(off)
t, SWITCHING TIMES
100ns
tf
t, SWITCHING TIMES
100ns tf td(on) tr
td(on) tr
10ns 5A
10A
15A
20A
25A
30A
10ns 0
20
40
60
IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 21, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E)
5.5V
td(off)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V typ. max.
t, SWITCHING TIMES
100ns
tf tr td(on)
min.
10ns 0C
50C
100C
150C
-50C
0C
50C
100C
150C
Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 2 1, Dynamic test circuit in Figure E)
Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.4mA)
6
Jul-02
SGP15N60,
SGB15N60 SGW15N60
Ets*
1.8mJ 1.6mJ
*) Eon and Ets include losses due to diode recovery.
1.4mJ
Ets*
1.2mJ
*) Eon and Ets include losses due to diode recovery.
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
1.4mJ 1.2mJ 1.0mJ 0.8mJ 0.6mJ 0.4mJ 0.2mJ 0.0mJ 0A Eon* Eoff
1.0mJ 0.8mJ Eoff 0.6mJ 0.4mJ 0.2mJ 0.0mJ 0 Eon*
5A
10A
15A
20A
25A
30A
35A
20
40
60
80
IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 21, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E)
1.0mJ Ets*
ZthJC, TRANSIENT THERMAL IMPEDANCE
*) Eon and Ets include losses due to diode recovery.
10 K/W D=0.5 0.2 10 K/W
-1
0
E, SWITCHING ENERGY LOSSES
0.8mJ
0.1 0.05 0.02
0.6mJ Eon* 0.4mJ Eoff
10 K/W 0.01
-2
R,(1/W) 0.5321 0.2047 0.1304 0.0027
R1
, (s)= 0.04968 2.58*10-3 2.54*10-4 3.06*10-4
R2
0.2mJ
10 K/W single pulse
-3
C 1= 1/R 1
C 2= 2/R 2
0.0mJ 0C
50C
100C
150C
10 K/W 1s
-4
10s
100s
1ms
10ms 100ms
1s
Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 2 1, Dynamic test circuit in Figure E)
tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T)
7
Jul-02
SGP15N60,
25V
1nF
SGB15N60 SGW15N60
20V
Ciss
VGE, GATE-EMITTER VOLTAGE
15V 120V 480V
C, CAPACITANCE
100pF
Coss
10V
Crss
5V
0V 0nC
25nC
50nC
75nC
100nC
10pF 0V
10V
20V
30V
QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 15A)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz)
25 s
250A
20 s
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
tsc, SHORT CIRCUIT WITHSTAND TIME
200A
15 s
150A
10 s
100A
5 s
50A
0 s 10V
11V
12V
13V
14V
15V
0A 10V
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25C)
VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE 600V, Tj = 150C)
8
Jul-02
SGP15N60,
TO-220AB
symbol min A B C D E F G H K L M N P T 9.70 14.88 0.65 3.55 2.60 6.00 13.00 4.35 0.38 0.95
SGB15N60 SGW15N60
dimensions [mm] max 10.30 15.95 0.86 3.89 3.00 6.80 14.00 4.75 0.65 1.32 min 0.3819 0.5858 0.0256 0.1398 0.1024 0.2362 0.5118 0.1713 0.0150 0.0374 [inch] max 0.4055 0.6280 0.0339 0.1531 0.1181 0.2677 0.5512 0.1870 0.0256 0.0520
2.54 typ. 4.30 1.17 2.30 4.50 1.40 2.72
0.1 typ. 0.1693 0.0461 0.0906 0.1772 0.0551 0.1071
TO-263AB (D2Pak)
symbol min A B C D E F G H K L M N P Q R S T U V W X Y Z 9.80 0.70 1.00 1.03 [mm]
dimensions [inch] max 10.20 1.30 1.60 1.07 min 0.3858 0.0276 0.0394 0.0406 max 0.4016 0.0512 0.0630 0.0421
2.54 typ. 0.65 0.85
0.1 typ. 0.0256 0.0335
5.08 typ. 4.30 1.17 9.05 2.30 4.50 1.37 9.45 2.50
0.2 typ. 0.1693 0.0461 0.3563 0.0906 0.1772 0.0539 0.3720 0.0984
15 typ. 0.00 4.20 0.20 5.20
0.5906 typ. 0.0000 0.1654 0.0079 0.2047
8 max 2.40 0.40 10.80 1.15 6.23 4.60 9.40 16.15 3.00 0.60
8 max 0.0945 0.0157 0.1181 0.0236
0.4252 0.0453 0.2453 0.1811 0.3701 0.6358
9
Jul-02
SGP15N60,
SGB15N60 SGW15N60
dimensions [mm] min max 5.28 2.51 2.29 1.32 2.06 3.18 min 0.1882 0.0902 0.0701 0.0429 0.0681 0.1051 [inch] max 0.2079 0.0988 0.0902 0.0520 0.0811 0.1252
TO-247AC
symbol
A B C D E F G H K L M N P Q
4.78 2.29 1.78 1.09 1.73 2.67
0.76 max 20.80 15.65 5.21 19.81 3.560 21.16 16.15 5.72 20.68 4.930
0.0299 max 0.8189 0.6161 0.2051 0.7799 0.1402 0.8331 0.6358 0.2252 0.8142 0.1941
3.61 6.12 6.22
0.1421 0.2409 0.2449
10
Jul-02
SGP15N60,
1
Tj (t) p(t)
SGB15N60 SGW15N60
2
r2 r1
n
rn
r1
r2
rn
TC
Figure D. Thermal equivalent circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
Figure E. Dynamic test circuit Leakage inductance L =180nH an d Stray capacity C =250pF.
11
Jul-02
SGP15N60,
Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 Munchen (c) Infineon Technologies AG 2000 All Rights Reserved. Attention please!
SGB15N60 SGW15N60
The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
12
Jul-02


▲Up To Search▲   

 
Price & Availability of SGW15N60

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X